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Design and Analysis of Halo orbits around L1 
Libration point for Sun-Earth system 
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Abstract—  In the last few years, the interest concerning the libration points for space applications has risen within    scientific community. 

This is because the libration points are the natural equilibrium solutions of the restricted three body problem. In this paper, design of halo 

orbit around L1 point for the sun-earth system is done by known non-linear differential equations by their initial conditions by differential 

correction and differential evolution methods. 

Index Terms— (Restricted three body problem, lagrangian points, Halo orbits, Differential correction, Differential evolution) 

——————————      —————————— 

1 INTRODUCTION                                                                     

The problem of three body systems is to determine the motion of 

three bodies under the influence of their mutual gravitational forces. 

If the mass of one of the bodies is a so small compared to the other 

two that it cannot influence their motion, then such systems are 

called restricted three body systems. This is the case of a spacecraft 

moving in the gravitational fields of two massive bodies like the 

Earth and the Sun or the Earth and the Moon. The problem of de-

scribing the motion of the smaller third body in such a system is 

called restricted three body problem. The two larger bodies are re-

ferred to as primaries. Further if system of the two larger bodies un-

dergoes a circular orbital motion, then the problem is called circular 

restricted three body problem or CRTBP in short 
Brief analysis of the circular restricted three-body problem (CRTBP) 

model has been done here, as we used in this study. In this model, 

the third body (spacecraft), assumed very small 

in comparison to the two primary bodies. Around a commaon center 

of mass known as barycenter, the two primaries are assumed to rotate 

in circular orbits at barycenter. The origin of the coordinate frame is 

fixed and rotates with the rotation of primaries. As shown in the fig1. 

                

 

 
 

 

 

 

 

Fig 1: CRTBP 

 

 

1.2 Lagrange points  
In solar system the locations where the gravitational pull from one 

massive body outweighs the pull of another massive body is said to 

be Lagrange points. Just as in earth and moon or sun and earth, creat-

ing points where satellite remains in orbit with less effort. As seen in 

Figure 2 below there are five different points. For the Earth-Sun sys-

tem, which this report will focus on, the first two points L1 and L2 

are located on the opposite sides of the Earth. L3 point lies on the 

line defined by the two large masses, beyond the larger of the two.   
     

The L4 and L5 points   lie at   the third corners of   the  
two equilateral triangles in the plane of orbit whose common base is 

the line between the centers of the two masses, such that the point 

lies behind (L5) or ahead (L4) of the smaller mass with regard to its 

orbit around the larger mass. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 2: Lagrange points for sun-earth system 

 
1.3 Halo orbits 

 

The name Halo orbits were first used in the PhD thesis of Robert W 

Farquhar in 1968. One of the most frequently studied models in the 

celestial mechanics is the three-body problem. The complicated in-

teraction between the gravitational pull of the two-planetary bodies, 

the cariols and centrifugal accelerations on a spacecraft results in 

halo orbit. The motion resulting from particular initial conditions, 

which produce periodic, three-dimensional ‘halo’ orbits. A halo orbit 

is a periodic, three-dimensional orbit near the L1, L2or L3 Lagrange 

points in the three-body problem of orbital mechanics. Although the 

Lagrange point is just a point in empty space, its peculiar characteris-
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tic is that it can be orbited. Halo orbits exist in any three-body sys-

tem, e.g. the Sun–Earth system and the Earth– Moon system. Con-

tinuous "families" of both Northern and Southern halo orbits exist at 

each Lagrange point. Because halo orbits tend to be unstable, station 

keeping is required to keep a satellite on the orbit 

 

2. EQUATIONS OF MOTION 

  

The three body problem involves the two finite masses m1 and m2, 

assumed to be a point mass, moving around their common center, 

each under the gravitational influence of the other. A rotating coordi-

nate system, with origin at the barycenter is chosen as shown in be-

low figure 3. µ is defined as the mass ratio m2 to sum m1+m2. 

 

The mass ratios of some familiar system are: Earth-Moon (0.012), 

Sun-Jupiter (9.5*10
-4

) and Sun-Earth (3*10
-6

). The x-y plane is the 

plane of motion of m1 and m2. A z-axis out of the paper competes 

the right handed system. The third body, m3, is assumed massless 

but may traveling all of the three dimension. In this system, it is well 

known that there are five equilibrium points, or liberation points, 

where gravitational and centrifugal forces balance each other. Tem-

porarily assuming m2<m1, the points are defined as shown in the 

figure. Of the collinear points, L3 is defined as being on the far side 

of the larger mass, L1 is between them, and barycenter, all five 

points remain in the same position relative to the masses for a given 

µ. For convenience, non-dimensional units were chosen such that the 

following quantities are equal to unity: the angular velocity of the 

rotating frame, the distance between m1 and m2, and the sum of the 

primary masses, m1+m2. 

 

 

 

 

 

 

  

 
 
 
 
 
 
 

Fig 3: Three body problem 
 

The following are the equations of motion of the third body given 

Szebehely 

 

 
 
 
 
 
 
 
 

The equilibrium solutions of the above shown equations of motion 

lead to five libration points,also known as lagrangain points or la-

grange points.some special type of solutions of circular restricted 

three body problem result in a motion that are periodic and quasi 

periodic about the lagrange points.this study pertains to design of 

halo orbit about a collinear libration point between two prima-

ries,Sun and Earth. 

 
3. HALO ORBIT SIMULATION 

 
 

3.1 Halo orbit simulation by differential correction 

 

The design is based ob DC Scheme as well as DE scheme use the 

halo orbit characterstics that (i) simple periodic halo orbits pierce 

the X-Z plane always orthogonally , (ii) again after half the period, 

the orbit must cross the X_Z plane orthhogonally. 

So, the state vectors at t0 and at half period (tT/2) are 

 

X(t0) = [ x0, 0, z0, 0, ẏ0, 0] 

 

X(tT/2) = [ xT/2, 0, z T/2, 0, ẏ T/2, 0] 

 

The suitable initial conditions [x0, z0,ẏ0] are selected such that at 

half –period x and z velocity components are equal to zero to ensure 

the orthogonal crossing that results in a halo orbit. 

 
3.2 Differentional Correction procudure 

 

Halo orbits are type of the periodic symmetric orbits that are sym-

metric about y=0 and pierce that plane twice per orbit. These can be 

constructed using DC (differential correction) method. The method 

takes imperfect but close guess of the orbit state X at t0, and inte-

grates that forward in time until the orbit crosses the y-plane, which 

it does at half an orbit period. Integration is performed using the state 

transition matrix phi (t0, tf) which is found from the partial deriva-

tives of the state.  
ɸ (t, t0) = ծX(t)/ծX(t0).  

The state transition matrix can then be propagated forward in time 

using 
̇ 

ɸ (t, t0) = A(t)ɸ(t, t0) 

where A = ծX
̇
(t)/ծX(t). 

The propagated state at the plane intersection (T/2) is 
̂ 

0 z T/̂2 ẋT/̂2 ẏT/̂ 2   żT/̂ 2] 
T 

X(T/2̂) = [ xT/2̂  

In order for the orbit to be periodic and symmetric it has to have the 

following initial form [4]:  

X(t0) = [ x0  0  z0  0 ẏ 0 ]
T 

Based on the state at (T/2) it is necessary to perform some changes to 

the initial state in order to generate a true halo orbit. The initial states 

x velocity and z position need to be driven to using deviation in the x 

position and z velocity which are applied to the initial state in an 

iterative process. 
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3.3 Computational Algorithm for differential correction method  
The theory has been implemented to build a halo orbit around L1. 

An initial state was found  

X(t0) = [ x(fix) 0 -0.0123 0 0.01285 0 ]
T

 for sun-earth system 

 

The initial state was then propagated forward in time for one period 

using a numerical integrator, in this case ODE113 in MALAB. The 

A-matrix to propagate the state transition matrix was generated using 

the function Jacobian in 

MATLAB. 
 
The next step was to find the true halo orbit based on the initial 

state.differential correction method was employed to find the true 

halo orbit .the initial state was propagated until it crossed the y=0 

plane, which can be easily found by setting a constraint in the op-

tions for the ODE113 function.The deviation in z position and y ve-

locity was found from the equations of motion and was then propa-

gated using a special state transition matrix specified in the back-

ground section.the deviations were applied to the initial state and 

iterated until convergence.the below figure show the flow chart of 

the algorithm to obtain the true periodic halo orbit  

 

 
 
 

3.4 Results and Discussion of Differential correction method 

 

The initial state has a small error which manifests itself by not com-

pletely closing. Differential corrections method was employed ton 

find the true period halo orbit which can be seen in below figures. 

The orbit closes well and encircles the L1 Lagrange point in the and 

Sun –Earth system.the designed orbit is of 40,000km and it has time 

period of 170days. 

 

 

 
 
 

 

 

 

 

 

 

 
Fig 4: Halo orbit around L1 point for sun-earth system in x-y plane 

 
 
 
 

 

 

 

 

 

 

 
 
Fig 5: Halo orbit around L1 point for sun-earth system in x-z plane 

 

4 Conclusions  

The Halo orbit around L1 point for sun-earth system designed by 

determining initial conditions through differential correction method.  
Design of halo orbit is done using ODE113 solver of MATLAB, 

Period and amplitudes of halo orbit is calculated. 
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